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Exercise 34

Solve the Stokes problem which is concerned with the unsteady boundary layer flows induced in a
semi-infinite viscous fluid bounded by an infinite horizontal disk at z = 0 due to nontorsional
oscillations of the disk in its own plane with a given frequency ω. The equation of motion and the
boundary and initial conditions are

ut = νuzz, z > 0, t > 0,

u(z, t) = Ueiωt on z = 0, t > 0,

u(z, t)→ 0 as z →∞ for t > 0,

u(z, 0) = 0 for t ≤ 0 and z > 0,

where u(z, t) is the velocity of the fluid of kinematic viscosity ν and U is constant. Solve the
Rayleigh problem (ω = 0). Explain the physical significance of both the Stokes and Rayleigh
solutions. [TYPO: This should be t.]

Solution

Solution to the Stokes Problem

The PDE is defined for t > 0 and we have an initial condition, so the Laplace transform can be
used to solve it. It is defined as

L{u(z, t)} = u(z, s) =

ˆ t

0
e−stu(z, t) dt,

which means the derivatives of u with respect to z and t transform as follows.

L
{
∂nu

∂zn

}
=
dnu

dzn

L
{
∂u

∂t

}
= su(z, s)− u(z, 0)

Take the Laplace transform of both sides of the PDE.

L{ut} = L{νuzz}

The Laplace transform is a linear operator.

L{ut} = νL{uzz}

Transform the derivatives with the relations above.

su(z, s)− u(z, 0) = ν
d2u

dz2

From the initial condition, u(z, t) = 0 for t ≤ 0, we have u(z, 0) = 0.

d2u

dz2
=
s

ν
u(z, s)
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The PDE has thus been reduced to an ODE whose solution can be written in terms of
exponential functions.

u(z, s) = A(s)e
√

s
ν
z +B(s)e−

√
s
ν
z

In order to satisfy the condition that u(z, t)→ 0 as z →∞, we require that A(s) = 0.

u(z, s) = B(s)e−
√

s
ν
z

To determine B(s) we have to use the boundary condition at z = 0, u(0, t) = Ueiωt. Take the
Laplace transform of both sides of it.

L{u(0, t)} = L{Ueiωt}

u(0, s) =
U

s− iω
(1)

Setting z = 0 in the formula for u and using equation (1), we have

u(0, s) = B(s) =
U

s− iω
.

Thus,

u(z, s) =
U

s− iω
e−
√

s
ν
z.

Now that we have u(z, s), we can get u(z, t) by taking the inverse Laplace transform of it. The
convolution theorem can be used to write an integral solution for u(z, t). It says that

L−1{F (s)G(s)} =
ˆ t

0
f(t− τ)g(τ) dτ =

ˆ t

0
f(τ)g(t− τ) dτ.

The inverse Laplace transform of the individual functions are

L−1
{

U

s− iω

}
= Ueiωt

L−1
{
e−
√

s
ν
z
}
=

z√
4πνt3

e−
z2

4νt ,

so by the convolution theorem, we have for u(z, t)

u(z, t) = L−1{u(z, s)} =
ˆ t

0
Ueiω(t−τ)

z√
4πντ3

e−
z2

4ντ dτ.

Bring the constants out in front and write the integral like so.

u(z, t) =
Uzeiωt√

4πν

ˆ t

0

1

τ3/2
e−

z2

4ντ
−iωτ dτ (2)

Evaluating the integral and simplifying, we get

u(z, t) =
Ueiωt

2

[
e
−
√
iω
ν
z
erfc

(
z√
4νt
−
√
iωt

)
+ e

√
iω
ν
z
erfc

(
z√
4νt

+
√
iωt

)]
,

where erfc is the complementary error function, a known special function, defined as

erfcx =
2√
π

ˆ ∞
x

e−r
2
dr. (3)
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In order to satisfy the condition that u(z, t) = 0 for t ≤ 0, we write the solution as a piecewise
function.

u(z, t) =

0 t ≤ 0

Ueiωt

2

[
e
−
√
iω
ν
z
erfc

(
z√
4νt
−
√
iωt
)
+ e

√
iω
ν
z
erfc

(
z√
4νt

+
√
iωt
)]

t > 0

This can be written compactly with the Heaviside function. Therefore,

u(z, t) =
Ueiωt

2

[
e
−
√
iω
ν
z
erfc

(
z√
4νt
−
√
iωt

)
+ e

√
iω
ν
z
erfc

(
z√
4νt

+
√
iωt

)]
H(t).

Solution to the Rayleigh Problem

In the event ω = 0, equation (2) becomes

u(z, t) =
Uz

2
√
πν

ˆ t

0

1

τ3/2
e−

z2

4ντ dτ.

Make the substitution,

p =
z√
4ντ

dp = − z

4
√
ντ3

dτ → −4
√
ν

z
dp =

1

τ3/2
dτ.

The solution becomes

u(z, t) =
Uz

2
√
πν

ˆ z√
4νt

∞
e−p

2

(
−4
√
ν

z
dp

)
.

Bring the constants out in front of the integral and use the minus sign to switch the limits of
integration.

u(z, t) =
2U√
π

ˆ ∞
z√
4νt

e−p
2
dp

Using equation (3), we can write this in terms of erfc.

u(z, t) = U erfc

(
z√
4νt

)
To satisfy the last condition, u(z, t) = 0 for t ≤ 0, we include the Heaviside function. Therefore,
when ω = 0,

u(z, t) = U erfc

(
z√
4νt

)
H(t).

We could have also just set ω = 0 in the solution to the Stokes problem to get this result.

The answer at the back of the book for the Stokes problem is totally off. Also, the solution for the
Rayleigh problem doesn’t have H(t), which means it is only valid for t > 0.
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